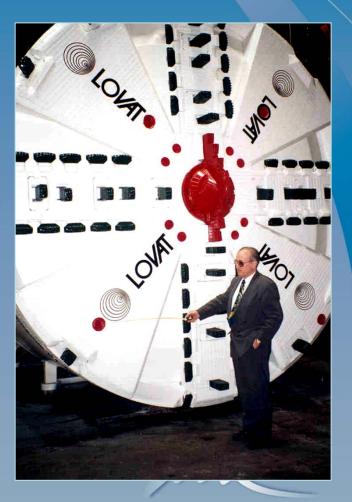
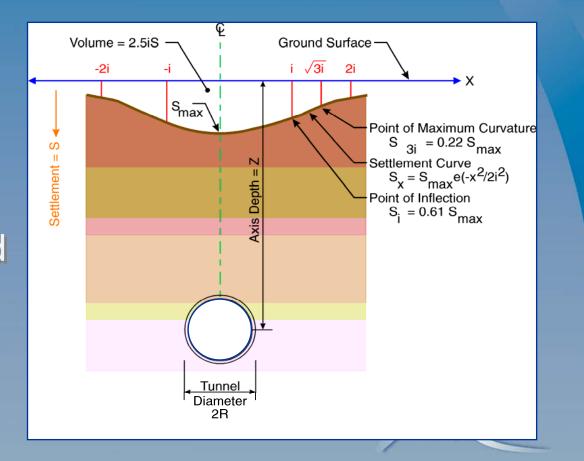

Settlement Control

Objectives
Engineering Analyses
Sources of Volume Loss
Instrumentation
Mitigation Measures


Objectives

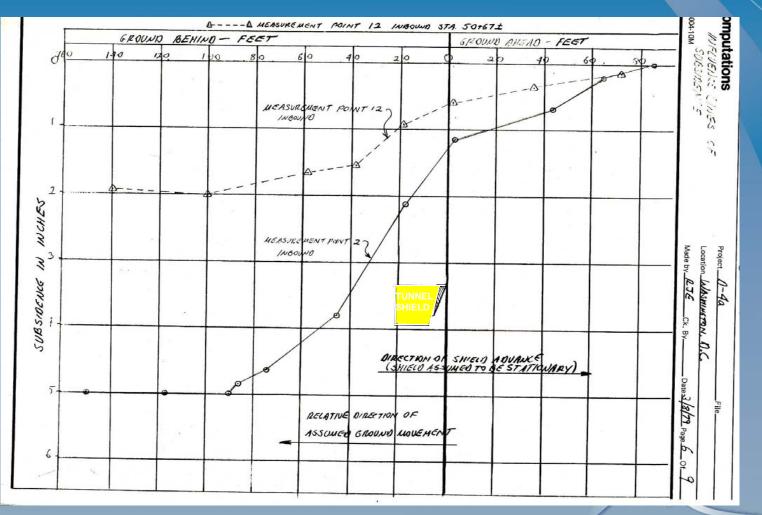
 Minimize impacts due to tunneling:
 Surface settlement
 Structure cracks and deflection
 Buried utilities


Engineering Analyses

Ground Characterization
 Volume Loss, V_L at tunnel depth
 Settlement Trough at surface
 Condition Assessments
 Effects on Structures

Settlement Trough

Volume loss
 Will transfer
 to the surface
 Well established
 equation for
 settlement trough


Sources of V_L during Tunneling

Loss Through Face (1)
Excessive Overcut for Steering (2)
Filling of the Tail Void (3)
Plowing (2 and 3)

D. C. Metro - 1979

Influence lines of subsidence – open face shields

Volume Loss Magnitudes **Historical Standards** Volume Loss, V₁ Good practice in firm ground 0.5% - better soils and excellent ground control Good practice in slow raveling ground 1.5% - considered good ground Fair practice 2.5% - More face and tail loss Poor practice 4.0% - Yet more face loss - Tail void mostly unfilled

Volume Loss Standards

Closed-face machines with one pass linings

New St. Clair Tunnel Vol. Loss <1.0%</p>

- Below water table
- Very soft clay

Toronto - Sheppard SubwayVol.Loss <0.8%</p> - Below water table Settlement <5/8 in. - Variable ground conditions

Effect on Structures

Uniform settlement - no concerns
 Angular distortion - causes damage due to tensile strain
 1/500 - safe limit for no cracking of buildings
 1/150 - potential structural damage

nstrumentation

- Measurement Objectives
 - Vertical displacements
 - Surface settlement monitors
 - Deep settlement monitors
 - Structure settlement / distortion
 - Lateral displacements
 - Ground inclinometers
 - Structures tilt meters
 - Water level indicators
 - Relative / absolute displacements
 - Tape / Rod Extensometers
 - Temperature effects
 - Gages / thermocouples

One of the most extensive ground nonitoring surveys ever attempted is no under way in Amsterdam, years before tunnelling starts for the city's metro. David Hayward reports.

ittle moves in Amsterdam these day without the team of engineers planning the city's new \$985M underground metro knowing all about it. Every creak or groan from up to 1,600 city centre uldings is being continuously monitored, while round movements 50m beneath the streets will n be meticulously recorded every hour. A mammoth six year settlement survey heine

arried out by French monitoring specialist Soldata, as just started. And with 140,000 readings currently eing fed to the computers of the city's engineers very week, the \$12.5M survey is claimed to be the ost extensive for any tunnelling project.

Close scrutiny of Amsterdam's infrastructure is seen as crucial in ensuring that driving the metro's in tunnels, directly beneath the historic heart of ne Dutch capital, causes minimal surface ttlement. Yet, curiously, the start of tunnelling is still three years away. "It is vital to establish,

contractor, how these buildings behave naturally wer the course of a full year and long before we egin tunnelling," explains Frank Kaalberg, design anager for Witteveen + Bos, Dutch consultant for etro client the Municipality of Amsterdam, "Our erriding aim during tunnelling is to cause no ructural damage to any buildings." To achieve this goal of negligible settlement, in a

city where most old buildings are continually subsiding naturally in the weak ground at an average

On literaler

for settleme

INSTRUMENTATION - AMSTERDA

upper stamunds the one engineers, surveyors, computer software experts and tunnelling machine manufacturers.

Kaalberg and his team are now 60% through an eight year pioneering research project to design and build an "intelligent" tunnel boring machine to drive the metro's 3.8km underground section. It will be a TBM designed to interact with, and respond to 3D computer analysis of building and subsurface movements during tunnelling. The aim is both to predict and reduce ground settlement. Working with German TBM manufacturer Herrenknecht, the team is designing a full face EPB tunnelling machine capable of exerting minimal subsoil disturbance and therefore minimal surface settlement (see box). Kaalberg is confident that two \$9.8M intelligent machines will be off the drawing board and in the ground ready to start the twin 5.8m finished

iameter drives by the end of 2004. It is a technical challenge that must not fail, for the possibility of causing damaging surface settlement is politically just not acceptable. City residents are well aware of the potential for disruption.

The first time metro construction was planned, early in the 1970s, tunnelling technology was much less developed and the likelihood of considerable settlement ruled out bored tunnels altogether Unfortunately, the chosen alternative for an east west line - forming the tunnels by sinking pneumatic caissons - demanded such widespread building demolition that it triggered riots in the streets from annoyed inhabitants. Ensuring good public relations this time, for construction of the total 9km northsouth line running right beneath the city centre, is seen as a major priority. Extremities of the line will run at grade or in cut

and cover. But the central 3.8km section will be routed through twin tunnels driven at an average depth of 30m directly beneath Amsterdam's main thoroughfares lined with many of the city's most architecturally important buildings. and only metres from

Four of the nine stations will be formed in large cover and cut boxes lined with diaphragm walling

Left: The central 3.8km section of the 9km metro

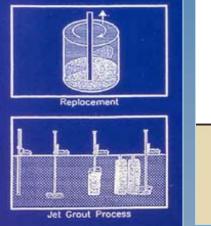
Monitoring and Feedback

- Distant / Deep Reference Datums
- Background readings
 - Temperature
 - Seasonal
- Automated Recording Systems
 - Automatic readings
 - GIS-Based Integrated Databases
 - Real-time link to machine operators

Mitigation Measures

Grouting Methods
 Freezing Methods
 Face Conditioning Agents

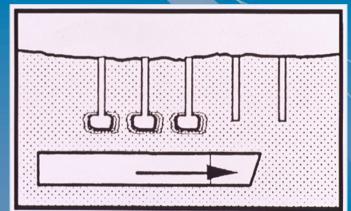

Mitigation Measures - Grouting

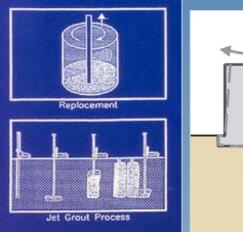

Compaction grouting

 Stiffen / densify soils at foundations before or following tunneling

Jet Grouting

- Columns of mixed grout/soil in tunnel zone before tunneling
- Compensation grouting
 - Fracture-grout to strengthen soil before and to lift ground during tunneling between tunnels and areas of concern


Mitigation Measures - Grouting


Compaction grouting

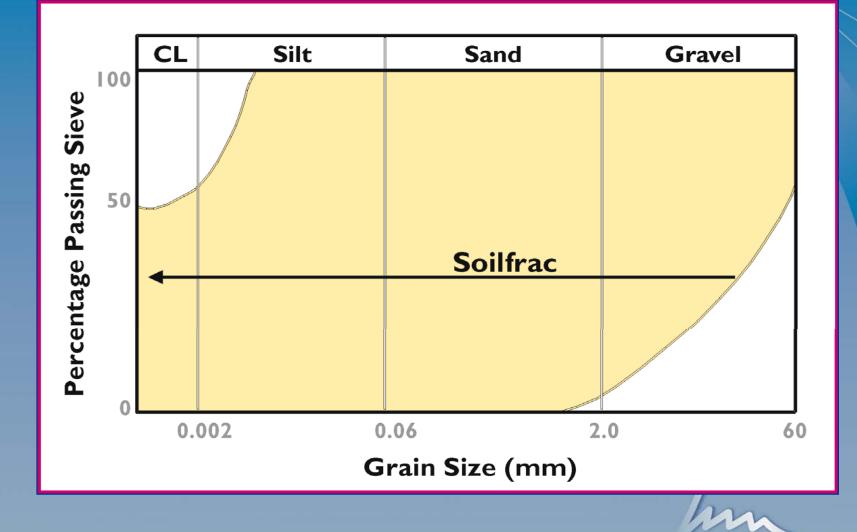
 Stiffen / densify soils at foundations before or following tunneling

Jet Grouting

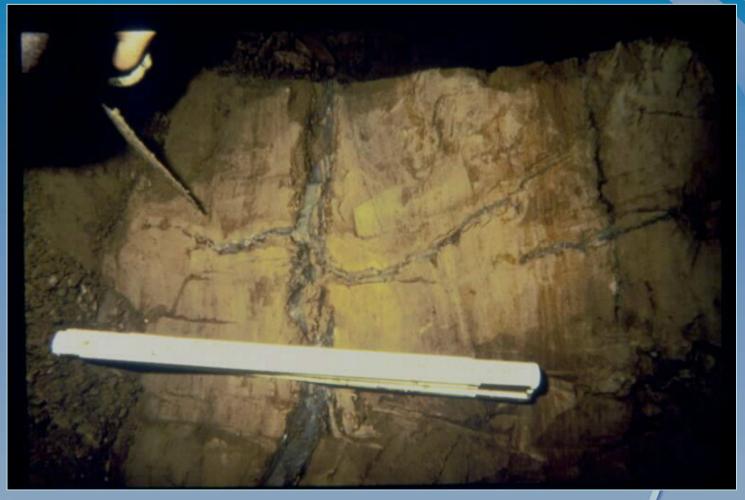
- Columns of mixed grout/soil in tunnel zone before tunneling
- Compensation grouting
 - Fracture-grout to strengthen soil before and to lift ground during tunneling between tunnels and areas of concern

Compensation Grouting

Pre-drilled horizontal grout holes


- Grout lenses cause expansion (heave) that counteracts settlement
- Initial grouting "preconditions" ground to point of incipient heave

Additional lense grouting as excavation proceeds


Compensation Grouting

Instrumentation provides real-time data feedback
 PK nails in pavement
 MPBXs with remote readout
 Electrolevels
 Can control settlement during tunneling to within 3 mm

Compensation Grouting

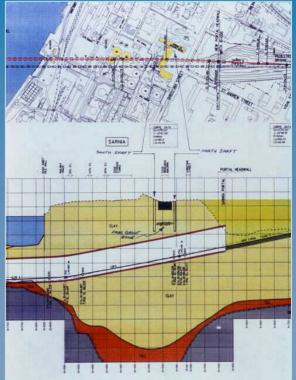
Compensation Grout Lenses

Applications

PROJECT	DATE	DIA.	GROUTING METHOD	OVER- BURDEN	STRUCTURE
WMATA Section E-2c Washington D.C.	1994	19 ft.	Permeation (vertical Pipes)	45 ft.	Urban area
WMATA Section E-3a Washington D.C.	1995	19 ft.	Permeation (vertical Pipes)	30 ft.	Urban area
WMATA Section E-4b Washington D.C.	1994	19 ft.	Permeation (horizontal pipes and from the face)	60 ft	Historic Cemetery
WMATA Section F-6b Washington D.C.	1997	19 ft.	Permeation (vertical Pipes and from the face)	50 ft.	Public Housing Project
CNR St. Clair River Tunnel Ontario, Canada	1993	30 ft.	Compensation	30 ft.	Imperial Oil Research Building
LA Metro Hollywood Freeway Crossing Section a-130	1994	21 ft.	Permeation	19 ft.	10 – Iane freeway
Arlington Cemetery Outfall	2000	48 in.	Compensation	15 ft.	Light Rail Tracks
Potomac Yards Outfall	2000	7.5 ft.	Compensation	20 ft.	Light Rail Tracks
Rio Piedras Station, San Juan PR	1998	60 ft.	Compensation	30 ft.	Urban area
MCT-1	1997	9 ft.	Compensation	70 ft.	Light Rail Tracks

Applications

PROJECT	DATE	DIA.	GROUTING METHOD	OVER- BURDEN	STRUCTURE
WMATA Section E-2c Washington D.C.	1994	19 ft.	Permeation (vertical Pipes)	45 ft.	Urban area
WMATA Section E-3a Washington D.C.	1995	19 ft.	Permeation (vertical Pipes)	30 ft.	Urban area
WMATA Section E-4b Washington D.C.	1994	19 ft.	Permeation (horizontal pipes and from the face)	60 ft	Historic Cemetery
WMATA Section F-6b Washington D.C.	1997	19 ft.	Permeation (vertical Pipes and from the face)	50 ft.	Public Housing Project
CNR St. Clair River Tunnel Ontario, Canada	1993	30 ft.	Compensation	30 ft.	Imperial Oil Research Building
LA Metro Hollywood Freeway Crossing Section a-130	1994	21 ft.	Permeation	19 ft.	10 – Iane freeway
Arlington Cemetery Outfall	2000	48 in.	Compensation	15 ft.	Light Rail Tracks
Potomac Yards Outfall	2000	7.5 ft.	Compensation	20 ft.	Light Rail Tracks
Rio Piedras Station, San Juan PR	1998	60 ft.	Compensation	30 ft.	Urban area
MCT-1	1997	9 ft.	Compensation	70 ft.	Light Rail Tracks

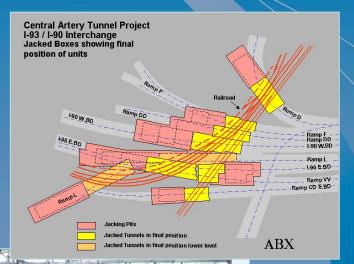

St. Clair River Tunnel

Challenge: Protect Imperial Oil Research Facility during undercrossing by 9.2 m diameter EPB tunnel in soft clays

St. Clair River Tunnel

Tunnel Plan and Profile

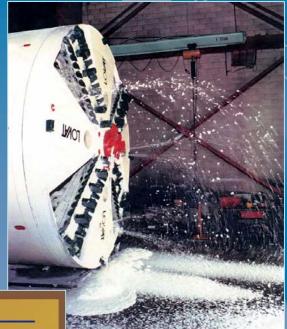
Grout Pipe Layout (2 shafts)

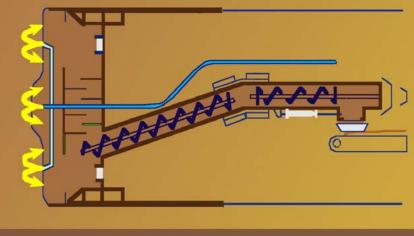

Grout Pipe Installation

Mitigation Measures

Freezing

- Install freeze pipes and circulate super-cooled fluid (brine or liquid nitrogen)
- Strengthen ground prior to tunneling





Central Artery Tunnel Project

Mitigation Measures

Face Conditioning Agents
 Polymers / additives injected into face
 Improve ground characteristics
 Improve passage / removal of cuttings

