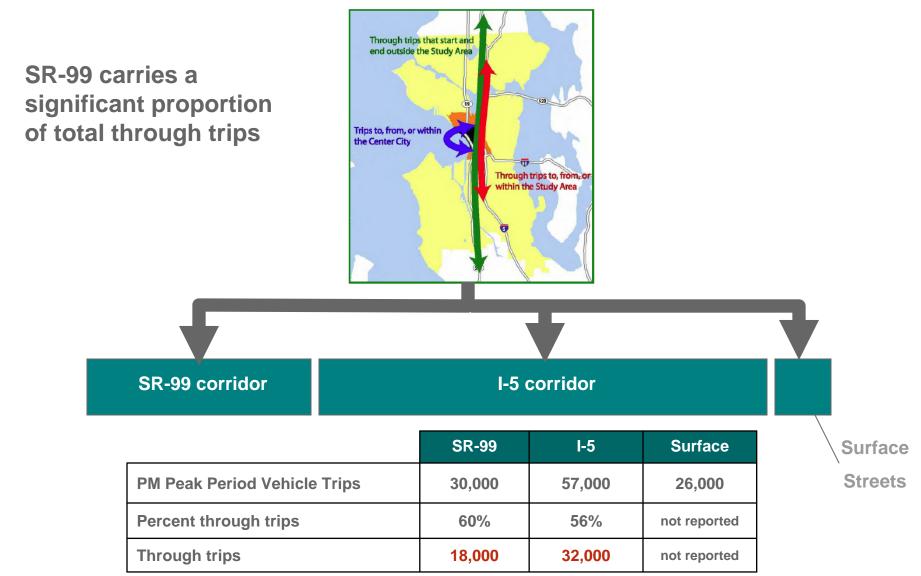
Large Diameter Highway Tunnels

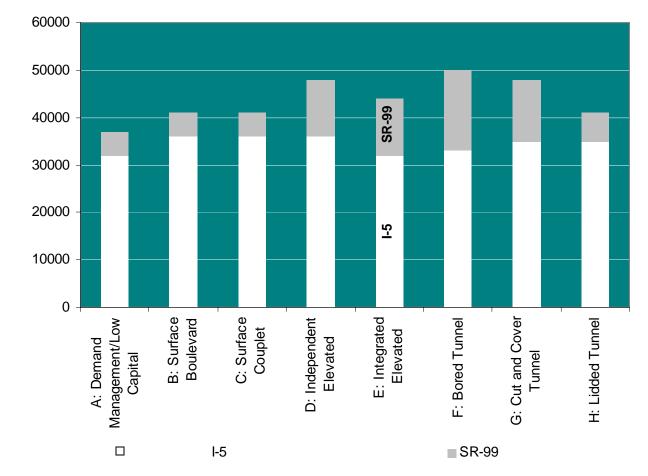
ARUP


Need

Feasibility

Whole-life cost

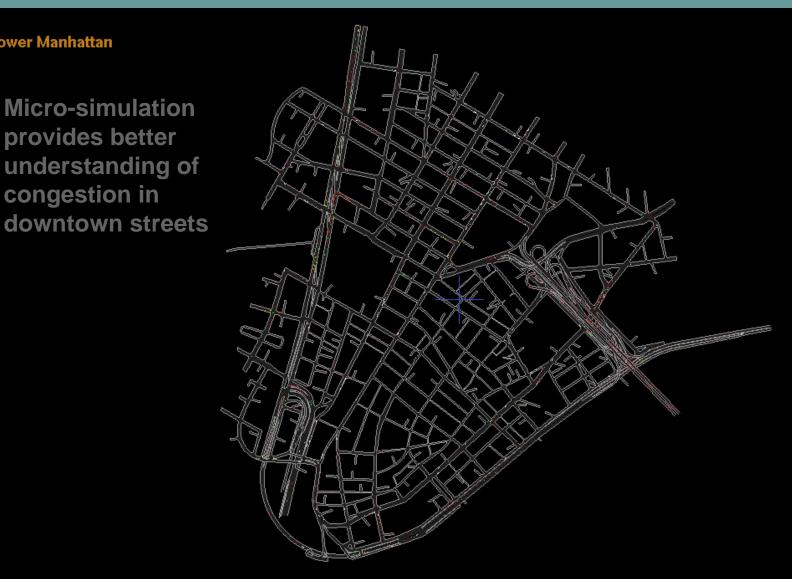
Corridors for through trips



Figures based on Stakeholder Advisory Committee Nov 13 2008 Guiding Principle #2 Briefing

SR-99 and I-5 peak period corridor through trips

Of the proposed options the bored tunnel best maintains the % of through traffic


"I-5 reached it's capacity many years ago and travel demand exceeds the road's capacity."

Figures based on Stakeholder Advisory Committee Nov 13 2008 Guiding Principle #2 Briefing

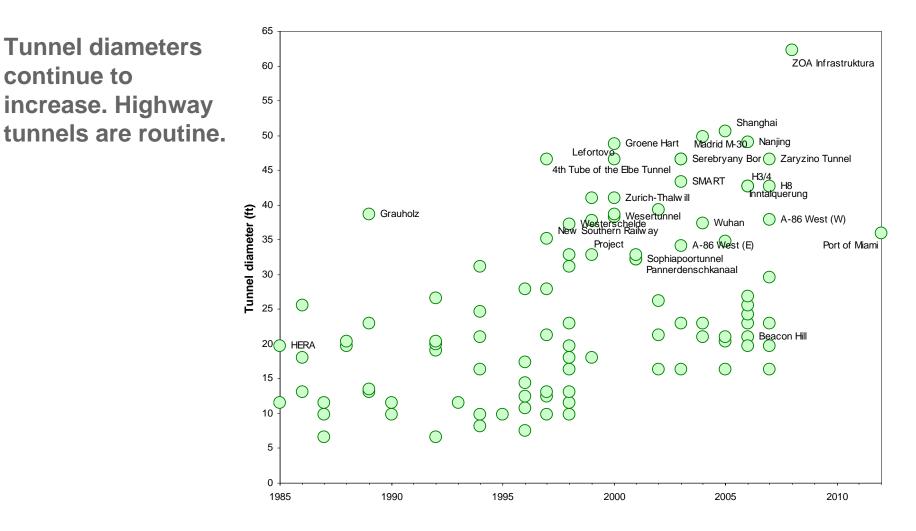
ARUP

Lower Manhattan - Micro-simulation

ARUP

Cascadia Center

Lower Manhattan


Need

Feasibility

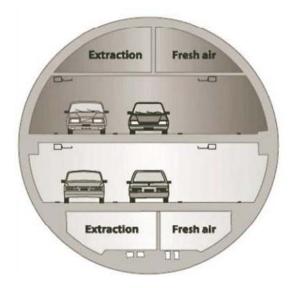
Whole-life cost

Tunneling machine diameters

TBM diameter development

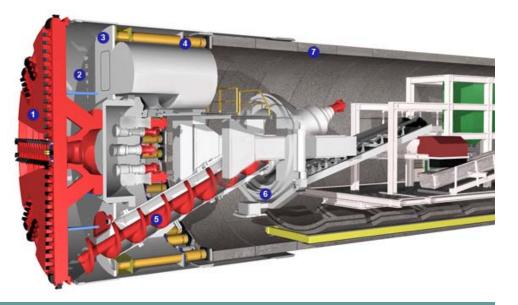

continue to

Versatility of tunnel configurations


Larger tunnel diameters allow for greater versatility in usage, combining highways, transit, emergency corridors etc.

Silver Forest Moscow

M-30 Madrid

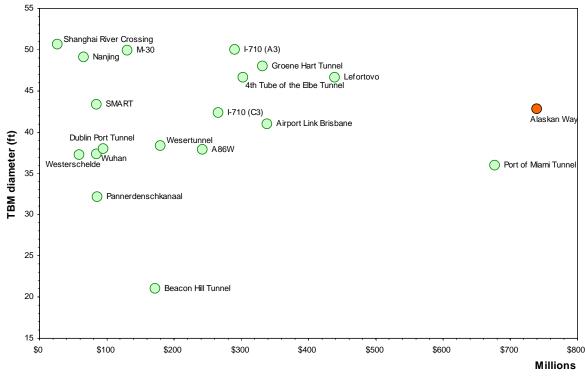

A-86 Paris

Improved TBM technology

- More powerful motors to drive head
- Real time monitoring of tunneling conditions
- More sophisticated foams and additives to support face
- Increased understanding of abrasivity
- Improved design of cutting tools
- Electronic sensors in cutting tools to assess wear
- Maintenance from within TBM avoid interventions under pressure
- Improved design of seals control higher water pressures
- Ground penetrating radar to identify obstructions – allow advance planning

Recent technological advances allow larger reliable tunnels

Need


Feasibility

Whole-life cost

ARUP

Survey of reported costs

Majority of projects indicate a cost per mile of single tunnel of less than \$350M. This equates, for two tunnels 10,000 ft long, to \$1.3Bn.

Survey of bored tunnel reported costs (per mile of bored tunnel)

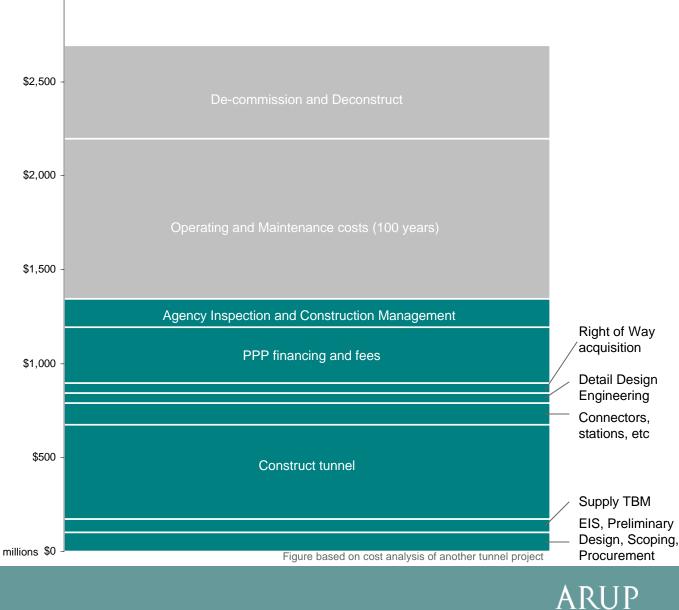
Reported project cost (per mile of bored tunnel)

Notes:

- Costs are reported project costs, and have been normalized to indicate the cost of a mile of single tunnel
- No price escalation has been incorporated
- Costs for I-710 project in Los Angeles are from feasibility study project is not built
- Alaskan Way figures based on \$2.8bn for twin 10,000ft long tunnels

Comparative design life

Tunnels have a design life of 100 to 150 years. Need to build 2 to 3 viaducts over life of a tunnel solution.



Typical whole-life cost breakdown

\$3.000

Concessionaires, when considering private financing of a project, view whole life costs. Construction costs typically considered a small risk.

Comparative life cycle costs

Tables from OpEd in Tunnels and Tunneling magazine indicating impact of assessing costs over life span of project for various alternatives

Table 1: Project cost										
	Soft cost					Construction cost			Total	
	EIS/EIR	Design fee	Right of way	Productivity loss	Construction management	Traffic relocation & maintenance	Utility relocation & support	Structures	project cost ⁽¹⁾	
Weighted % Average Range	4.5 3 - 6	13.5 12 - 15	11.5 8 - 15	3,5 2 - 5	13.5 12 - 15	16.5 8 - 25	11.5 8 - 15	25.0 15 - 35	100	
At grade = baseline	1	1	1	1	1	1	1	1	1.0	
Elevated structure/viaduct bridge	1.4	1.4	1.8	1	2	1	1.2	7	2.8	
Tunnel cut & cover	1.4	1.6	1	1.5	1.6	1.5	2	10	3.7	
Tunnel mined	0.3	1.4	0.3	0.3	0.7	0.3	0.3	11	3.2	

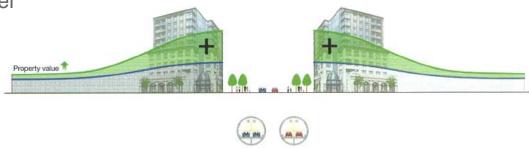
Notes: (1) Refer to Table 2 for life time costs (Environmental pollution, property tax, maintence costs, social divide, life time factor)

		Project cost	per annum (1)(2)			Annual costs				
		Life span relation	Total project cost	Total		Environmental pollution	Loss of property taxes	Social divide	Maintenance cost	Tota
		-	-	100	Weighted % Average Range	25 20 - 30	25 20 - 30	15 10 - 20	35 30 - 40	100
Life span in years	ê	1	1	1	At grade = baseline	1	1	1	1	1
	8	2	2.8	5.7	Elevated structure/viaduct bridge	1.2	1	0.8	2	1.4
	ŝ	1	3.7	3.7	Tunnel cut & cover	0.05	0.2	0	1.3	0.5
	150	0.66	3.2	2.1	Tunnel mined	0.05	0.2	o	1.1	0.4

Notes: (1) Refer to Table 1 (2) Interest not included

Based on international experience in urban areas

ARUP


Comparative economic impact

Elevated urban highway Local access road

Urban street with traffic calming measures Urban highway tunnel

Summary of bored tunnel benefits

- Greater opportunity to provide public amenity Socially responsible use of surface space
- Increased property values
- Greater seismic resilience
- Removes congestion and pollution from downtown streets
- Development opportunities where land is released by placing facility below ground particularly at portals
- Allows existing viaduct to be retained during tunnel construction greatly reducing construction impacts
- Reduced disruption to businesses during construction
- Reduced downtown street impacts to pedestrians and vehicles during construction
- Reduced utility relocations

Need

- Through traffic on the SR-99 is significant. The economic impact of reducing the SR-99 corridor could be significant.
- A bored tunnel retains the existing proportion of through traffic.

Feasibility

• Large bore highway tunnels are feasible and common throughout the world.

Whole-life cost

- Whole life costs represent true cost to owners
- Major transportation projects must recognize the wider impact to the community

