



#### Conference

February 28, 2005







CREWMM



WASHINGTON

Earthquake Engineering Research Institute







# **Essential Facilities**

Stacy Bartoletti, P.E., S.E. Degenkolb Engineers, Inc.





#### **SEAW Essential Facilities Team**





£

10

U U

S

n

| Engineer                    | Task                      | Organization                             |
|-----------------------------|---------------------------|------------------------------------------|
| Stacy Bartoletti, PE,<br>SE | Hospitals, Team<br>Leader | Degenkolb<br>Engineers, Inc.             |
| Doug Wilson, PE             | Fire Stations             | Reid Middleton, Inc.                     |
| Brian Zagers, PE            | Police Stations           | Coughlin Porter<br>Lundeen, Inc.         |
| Jack Wiggins, PE,<br>SE     | Schools                   | Quantum<br>Consulting<br>Engineers, LLC. |

#### Fau ua 10 rthq



# FES





Peak Ground Acceleration Magnitude 6.7



**Overview of Hospitals** 

- 25 Hospitals in Region
- 6,300 licensed hospital beds
- Age of construction varies but is generally post 1960's
- Construction generally consist of steel and cast in place concrete







#### Hospitals Performance in Past EQ's

- 1989 Loma Prieta 112 Bay Area Hospitals Impacted. None fully closed.
- Structurally performed well post 1973 Hospital Seismic Safety Act.
- All hospitals resumed regular operations within 48 hours.
- Key Issues Hospitals and Government to improve communications and nonstructural damage.





### Hospitals Performance in Past EQ's

- 1994 Northridge (M6.8)
- Property losses of \$20B, 61 deaths, 7,000 injured, 50,000 homeless.







## Hospitals Performance in Past EQ's



#### **Olive View Hospital**





#### Hospitals Performance in Past EQ's



#### VA Sepulveda - NS Damage





### Hospitals Performance in Past EQ's

- 1995 Kobe (M 7.2)
- \$1.1B damage to hospitals.
- 193 of 222 hospitals experienced some damage in Hyogo Prefecture.
- Kobe 103 of 112 hospitals damaged, 763 of 1,363 clinics damaged.
- Many hospitals unable to provide ordinary services.
- Widespread nonstructural damage.







### **Hospital Damage Projections**

- Greatest damage near fault in regions of high ground motions.
- Concrete damage will consist of cracking and spalling.
- Potential for steel frame damage to moment frames and braced frames.
- Nonstructural damage will be significant.
- Potential short-term loss of utility service.



#### **Hospital Damage Projections**

Table 6-1: Estimate of Number of Available Hospital Beds at Various Time PeriodsFollowing Event

| Time After<br>Event | King County<br>(4,400 Total Beds) |                     | Pierce County<br>(1,400 Total Beds) |                     | Snohomish County<br>(500 Total Beds) |                     |
|---------------------|-----------------------------------|---------------------|-------------------------------------|---------------------|--------------------------------------|---------------------|
|                     | # Beds<br>Available               | % Beds<br>Available | # Beds<br>Available                 | % Beds<br>Available | # Beds<br>Available                  | % Beds<br>Available |
| 1 Day               | 1,100                             | 25%                 | 1,110                               | 79%                 | 380                                  | 76%                 |
| 3 Days              | 1,370                             | 31%                 | 1,160                               | 83%                 | 400                                  | 80%                 |
| 7 Days              | 1,720                             | 39%                 | 1,230                               | 88%                 | 420                                  | 84%                 |
| 30 Days             | 2,910                             | 66%                 | 1,340                               | 96%                 | 480                                  | 96%                 |
| 90 Days             | 3,470                             | 79%                 | 1,390                               | 99%                 | 490                                  | 99%                 |

Seattle Fault Earthquake Scenario









#### **Predicted Casualties**

|                                                        |             | Level 1                                               | Level 2 | Level 3 | Level 4 |
|--------------------------------------------------------|-------------|-------------------------------------------------------|---------|---------|---------|
| 2 AM                                                   | Residential | 5,003                                                 | 1,014   | 98      | 184     |
|                                                        | Non – Res.  | 585                                                   | 170     | 28      | 55      |
|                                                        | Commute     | 2                                                     | 2       | 3       | 1       |
|                                                        | Total       | 5,589                                                 | 1,187   | 129     | 239     |
| 2 PM                                                   | Residential | 1,381                                                 | 281     | 27      | 51      |
|                                                        | Non – Res.  | 17,908                                                | 5,157   | 840     | 1,661   |
|                                                        | Commute     | 8                                                     | 10      | 17      | 3       |
|                                                        | Total       | 19,296                                                | 5,449   | 884     | 1,715   |
| 5 PM                                                   | Residential | 1,640                                                 | 334     | 32      | 61      |
|                                                        | Non – Res.  | 7,531                                                 | 2,184   | 357     | 705     |
|                                                        | Commute     | 22                                                    | 30      | 50      | 10      |
|                                                        | Total       | 9,175                                                 | 2,547   | 439     | 776     |
| Level 1 – Medical Attention but not<br>Hospitalization |             | Level 3 – Hospitalization and can become Life-<br>Th. |         |         |         |
| Level 2 – Hospitalization but not Life-<br>Threatening |             | Level 4 - Deaths                                      |         |         |         |







#### **Hospital Impacts and Recovery Issues**

- Damage to NS systems will be a major issue.
- Impacts to current patients due to potential hospital shut downs?
- Are hospitals prepared for significant number of injuries?
- Damage to transportation system and life lines will have a significant impact on ability to function and get patients to hospitals.







### **Hospital Recommendations**

- Phase out and/or upgrade older poor performing hospital structures.
- Evaluate nonstructural seismic performance and upgrade.
- Consider performance based design for new facilities to ensure immediate occupancy of critical facilities.
- Hospitals need to be prepared to assess damage to facilities immediately following EQ.

#### **Ne** 101 O 1 せ Š



FES



# **Overview of Fire Stations**



- Over 350 fire stations in region
- Distribution proportionate to population
- Vary in size and construction type
  - Unique features include bay doors and hose towers







#### **Overview of Fire Stations**

- Generally older than average building stock
  - May mean poorer seismic performance
- Common construction types include:
  - Wood Frame
  - Reinforced Masonry
  - Cast-in-place Concrete
  - Precast Concrete







### Fire Stations Performance in Past EQ's

- Apparatus bay doors jamming.
- Damage to apparatus.
- Partial or complete collapse of structures.
- Non-structural damage (sprinklers, equipment, and ceilings) resulting in reduced functionality.





#### **Fire Station Damage Projections**



Fire station at Olive View Hospital damaged in the 1971 San Fernando, California earthquake

- Similar or worse than surrounding buildings
- Most significant in Seattle, Bellevue, Kirkland, Redmond, Renton, Tukwila, Kent Valley
- Less severe to north and south







**Fire Station Damage Projections** 

#### **Table 6-2: Projected Damage to Fire Stations**

| Peak Ground<br>Acceleration | % of Stations with<br>Reduced<br>Functionality | % of Stations Not<br>Useable |  |  |
|-----------------------------|------------------------------------------------|------------------------------|--|--|
| Greater than 0.75g          | More than 70%                                  | 20% to 30%                   |  |  |
| Between 0.45g and 0.75g     | 60% to 70%                                     | 10% to 20%                   |  |  |
| Between 0.30g and 0.45g     | 30% to 40%                                     | Less than 10%                |  |  |
| Between 0.15g and 0.30g     | 10% to 20%                                     | Less than 5%                 |  |  |
| Less than 0.15g             | Less than 10%                                  | 0%                           |  |  |

Seattle Fault Earthquake Scenario







# Fire Station Impacts and Recovery Issues

- Units temporarily unavailable while personnel extricate apparatus from station.
- Some units unavailable due to damage to apparatus.
- Some stations may be abandoned due to the extent of damage. This represents an operational challenge after about 24 hours since duty personnel will no longer have sleeping facilities.







#### Fire Stations Impacts and Recovery Issues

- Is dispatch/communication system operational?
- Large call volume, overwhelming available resources.
- Inadequate water supply inhibiting suppression.
- Delayed responses in some areas due to obstructions in roads, possible bridges and overpasses unusable.







#### Fire Stations Impacts and Recovery Issues

- Some units will be "homeless".
- Temporary quarters must be within reasonable response time.
- Use of portable trailers for temporary quarters?







#### **Fire Station Recommendations**

- Evaluate all facilities to identify relative risks.
- Emphasis on apparatus bays.
- Non-structural upgrades to reduce injuries and damage to apparatus.
- Possible upgrade of key fire stations to act as post-earthquake response centers.





FER



# **Overview of Police Stations**



- Over 90 police stations in region
- **Relatively modern** construction
- Communication centers typically not in high risk buildings







## **Overview of Police Stations**

- Some buildings seismically retrofitted -Seattle East Police Precinct.
- King County Sheriff communications center in "hardened" and redundant building.
- City of Seattle Police Department headquarters built in 2002.
- City of Seattle Police Department SW Precinct headquarters - designed as "essential facility".
- Some police stations located in other buildings such as city halls - not typically designed as an "essential facility".







### Police Station Performance in Past EQ's

- No impairment of police department response noted in past Puget Sound earthquakes due to building performance.
- Ground motions in Seattle Fault Scenario significantly greater than past Puget Sound events.







#### **Police Station Damage Projections**

- Damage to most police stations is not expected to be severe.
- Damage with the largest impact will be non-structural.
- Damage to transportation systems is key for response.







#### **Police Impacts and Recovery Issues**

- Not heavily dependent on physical buildings - rely on vehicle based officers in the field.
- Communications are key dispatch and 911 centers generally not in high risk buildings.
- Performance of transportation infrastructure is important.
- Storage and parking facilities may be damaged cars and supplies trapped.







#### **Police Station Recommendations**

- Areas of major damage identified quickly so resources can be redirected.
- Police must assess their buildings for both structural and non-structural impacts.
- Communication is key in mobilizing response. This must be assessed in more detail.













- Over 1,200 schools and campuses in region
- Wide range of construction materials and age
- Some level of upgrade completed but not well documented as a region







## Schools Performance in Past EQ's

- Poor past performance most predominant in unreinforced masonry structures.
- Building codes have progressed in ability to protect schools - have not required strengthening of existing buildings.
- Some level of voluntary strengthening has been undertaken; however, not enough and full extent not well published.



#### **School Damage Projections**

| Cable 6-3: | Expected | Damage | to | Schools |
|------------|----------|--------|----|---------|
|------------|----------|--------|----|---------|

| County       | Damage (in percent) |        |          |           |          |  |
|--------------|---------------------|--------|----------|-----------|----------|--|
| County       | No Damage           | Slight | Moderate | Extensive | Complete |  |
| King County  | 23%                 | 22%    | 29%      | 18%       | 8%       |  |
| Pierce       | 64%                 | 18%    | 12%      | 5%        | 1%       |  |
| Snohomish    | 64%                 | 14%    | 9%       | 3%        | 10%      |  |
| Total Region | 38%                 | 20%    | 22%      | 13%       | 7%       |  |









#### School Impacts and Recovery Issues

- Immediate issue of how to care for thousands of children while parents try to reach them.
- Intermediate and long-term issues with where to house students to continue education and allow parents to return to work.
- Local governments may place a higher priority on repair of schools.





#### Conference

February 28, 2005



WASHINGTON





CREWMM



Earthquake Engineering Research Institute