

Seattle Fault Earthquake Scenario

Conference

February 28, 2005

CREWMM

WASHINGTON

Earthquake Engineering Research Institute

Seattle Fault Earthquake Scenario

Seattle Fault and the Scenario Earthquake

Craig Weaver, PhD U.S. Geological Survey

eattle Fault Earthquake Scenario

Ground Motion Contributors

- Dr. Craig Weaver, Ph.D.**
 - U.S. Geological Survey
- Dr. Art Frankel, Ph.D.
 - U.S. Geological Survey
- Dr. Brian Sherrod, Ph.D.
 - U.S. Geological Survey
- Dr. Ralph Haugerud, PhD.
 - U.S. Geological Survey
- Dr. Rick Blakely, Ph.D.
 - U.S. Geological Survey
- Dr. Stephen Palmer, L.E.G., Ph.D.
 - Washington State Department of Natural Resources

** - Team Leader

How Big?

The scenario earthquake produces very strong ground motions. The highest ground shaking in the Nisqually earthquake was about 0.3 g—in a few small areas.

Seattle Fault Earthquake Scenario

How Often?

Approximate 50 year probabilities

- Cascadia M9: 10-14%
- Seattle Fault M ≥ 6.5: 5% (from slip rate, GR model; 1000 yr return time) ???
- Deep M \geq 6.5: 84% (from 1949, 1965, 2001)
- Random shallow M ≥ 6.5 in entire Puget Sound area: 15% (mostly from rate of M ≥ 4 since 1963, b=0.8) ???

How Often??

The Seattle fault zone is one of a series of major faults that cut across the Puget Sound basin

- △ Uplifted site
- Subsided site
- Site with no change
- Thrust fault, barb on upthrown block
- ----- Geophysical anomaly
- Holocene scarp
- 🔲 Urban areas

Faul

ttle

O

1

Known Crustal Fault Events—How Often??

The Seattle Fault

uplifted

prehistoric

beach

Seattle Fault

Seattle Hazard Maps

FER

In detail—Seattle fault is complex

Interpreted Aeromagnetic Map of the Seattle Fault Zone

Epicenter, M 4.9 Bainbridge Island earthquake

FES

Fau

rthq

Bellevue Surface Faulting Sites

Church Parking Lot

Bedrock

Sediments

ţ

Before the Vasa Park Trench

Why we need lidar!!

Vasa Park Trench

seattle Fault Earthquake Scenario

Modeled fault trace: 4 segments, about 22 km length

seattle Fault Earthquake Scenario

Scenario Earthquake Faulting Parameters

- Magnitude 6.7
- Surface rupture = 6 feet (matches trench)
- Located at frontal fault
- Four segments, about 16 miles length
- 9 miles deep fault
- 45° from surface
- Breaks from depth up

eattle Fault Earthquake Scenario

Local Site Conditions

E soils are expected to cause problems

How Big?

The scenario earthquake produces very strong ground motions. The highest ground shaking in the Nisqually earthquake was about 0.3 g—in a few small areas.

FEL

Seattle Fault Earthquake Scenario

Ground Motions Comparison

PNSN Rapid Instrumental Intensity Map Epicenter: 17.6 km NE of Olympia, WA Wed Feb 28, 2001 10:54:00 AM PST M 6.8 N47.15 W122.72 ID:0102281854

PERCEIVED	Notfalt	Weak	Light	Moderate	Strong	Very strong	Savara	Violant	Externe
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL(cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	18-31	31-80	60-118	>118
INSTRUMENTAL INTENSITY	I	IFIII	IV	٧	VI	VII	VIII	IX	X+

Nisqually

Scenario

seattle Fault Earthquake Scenario

Call to Action—Earth Sciences

- Complete lowland lidar
 - North Puget Sound and Lewis County highest priority
 - Coastal Counties and SW Washington second priority
- Accelerate geological and geophysical studies
 - Paleoseismology of crustal faults
 - Geological mapping of urban areas
 - Geophysical studies of Tacoma basin, selected faults
- Enhance regional seismic network
 - Increase number of urban strong motion stations—do site characterizations of all sites
 - Instrument critical structures, lifelines, and buildings
 - Increase capabilities at the UW seismic lab to meet state, local and private informational needs

Seattle Fault Earthquake Scenario

Conference

February 28, 2005

WASHINGTON

CREWMM

Earthquake Engineering Research Institute